Automating Theories in Intuitionistic Logic
نویسنده
چکیده
Deduction modulo consists in applying the inference rules of a deductive system modulo a rewrite system over terms and formulæ. This is equivalent to proving within a so-called compatible theory. Conversely, given a first-order theory, one may want to internalize it into a rewrite system that can be used in deduction modulo, in order to get an analytic deductive system for that theory. In a recent paper, we have shown how this can be done in classical logic. In intuitionistic logic, however, we show here not only that this may be impossible, but also that the set of theories that can be transformed into a rewrite system with an analytic sequent calculus modulo is not co-recursively enumerable. We nonetheless propose a procedure to transform a large class of theories into compatible rewrite systems. We then extend this class by working in conservative extensions, in particular using Skolemization.
منابع مشابه
AN ALGEBRAIC STRUCTURE FOR INTUITIONISTIC FUZZY LOGIC
In this paper we extend the notion of degrees of membership and non-membership of intuitionistic fuzzy sets to lattices and introduce a residuated lattice with appropriate operations to serve as semantics of intuitionistic fuzzy logic. It would be a step forward to find an algebraic counterpart for intuitionistic fuzzy logic. We give the main properties of the operations defined and prove som...
متن کاملAutomated Proof and Program Development
The aim of this paper is to present proof and program development in in-tuitionistic logic and attempt to automating this with tactics and strategies. It is important in computer science to have correct programs and much work has been devoted to this aspect. Typically, the study of the relationships between intuitionistic logic and computer science leads to the programming with proofs, i.e., ex...
متن کاملForcing in proof theory
Paul Cohen’s method of forcing, together with Saul Kripke’s related semantics for modal and intuitionistic logic, has had profound effects on a number of branches of mathematical logic, from set theory and model theory to constructive and categorical logic. Here, I argue that forcing also has a place in traditional Hilbert-style proof theory, where the goal is to formalize portions of ordinary ...
متن کاملEvaluating Construction Projects by a New Group Decision-Making Model Based on Intuitionistic Fuzzy Logic Concepts
Select an appropriate project is a main key for contractors to increase their profits. In practice, in this area the uncertainty and imprecise of the involved parameters is so high. Therefore, considering fuzzy sets theory to deal with uncertainly is more appreciate. The aim of this paper is present a multi-criteria group decision-making model under an intuitionistic fuzzy set environment. Henc...
متن کاملInterpreting Classical Theories in Constructive Ones
A number of classical theories are interpreted in analogous theories that are based on intuitionistic logic. The classical theories considered include subsystems of firstand second-order arithmetic, bounded arithmetic, and admissible set theory.
متن کامل